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Style 1, 
anime 

sketches [3]

Style 2, 
comics 

images [4]

We fine-tune Stable Diffusion (SD) [1] with a style-specific noise 
distribution 𝒩 𝜇!"#$%, Σ!"#$% 	instead of the default 𝒩 0&, I&×& .

The initial noise (𝑥())) affects the style of the generated image 
(𝑥), so adapting it to the style facilitates style adaptation. 

Original diffusion

Our style-adapted
diffusion

𝜀~𝒩 0!, I!×!

𝜀~𝒩 𝜇#$%&', Σ#$%&'

𝑥()))𝑥**+𝑥,,,𝑥)

We use our approach to fine-tune SD 1.5 [1] to different styles, e.g. anime sketches, or comics images.
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Diffusion models never fully corrupt images during training [5,6]:

𝑥())) = +𝛼()))	𝑥)+ 1 − +𝛼()))	𝜀  with 𝑥)~𝑝 𝑥) 	 and 𝜀~𝒩 0&, I&×&
													≈ 0.068	𝑥)   +	0.998	𝜀

"𝑥()))~𝒩(0& , I&×&)
≠ 	𝑝 𝑥()))

However, the process of generating images starts with pure noise 
(𝑥()))~𝒩(0&, I&×&), oblivious of the signal leak +𝛼()))	𝑥) present in 
𝑥()))	during training, creating a bias.

The diffusion model uses the signal-leak +𝛼()))	𝑥) in 𝑥())) to deduce 
the low-frequency information about 𝑥). Using (𝑥()))	~	𝒩 0&, I&×&  
biases the low-frequency components towards medium values.

𝑥) 𝑥-)) (𝑥()))
Training Inference
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Instead of retraining or finetuning [5,6,A] to remove this bias, we exploit it to our advantage by including a 
signal-leak +𝛼()))	 :𝑥 in (𝑥())) at inference time, starting generating images from:

(𝑥())) = +𝛼()))	 :𝑥 + 1 − +𝛼()))	𝜀	 with :𝑥~	𝑞 :𝑥  and 𝜀~𝒩(0&, I&×&)

At inference time, we can control the low-frequency components of the generated images (𝑥) by setting the 
desired ones (here, the mean color) in :𝑥:

With 𝑞 :𝑥  = 𝒩 𝜇!"#$%, Σ!"#$% , we exploit the bias to generate images (𝑥) in the style we want:

[…] in the style of line 
art, pastel colors, white 

background.

SD 2.1 [1]

SD 2.1 [1] 
with ours

line-art model [7] 

line-art model [7] 
with ours

nasa space model [8]

nasa space model [8] 
with ours

A blue city at night, 
long exposure, 

orange and blue.

SD 2.1 [1]

SD 2.1 [1] 
with ours
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We observe that the style of images generated by Stable Diffusion is 
tied to the initial noise. Thus, we propose a method to adapt Stable 
Diffusion to various styles using style-specific noise during fine-tuning 
(ICCV23). We subsequently explain that white noise added during 
training preserves low-frequency (LF) content, and the model then 
learns to maintain the LF of the initial noise. Controlling this initial 
noise allows to generate images with desired styles without fine-
tuning (WACV24).

Forward Diffusion (Noising)

Reverse Diffusion (Generation/Sampling)

𝑥! 𝑥"!!!= /𝛼!	𝑥"+ 1 − /𝛼!	𝜀	with	𝜀~𝒩 0#, I#×#𝑥#

"𝑥"!!!"𝑥#"𝑥!
Image from [2]

We compute the style-specific noise parameters 𝜇<=>?@ and Σ!"#$% from 
a small set of images of the desired style. We use the finetuned 
model to denoise the initial noise (𝑥()))~𝒩 𝜇!"#$%, Σ!"#$% . 

A side view of an 
owl sitting in a field.

A panda making 
latte art.

Rainbow coloured
penguin.

A cross-section
view of a brain.

A mouse using a 
mushroom as an 

umbrella.
A confused  grizzly 

bear in calculus class.


