CONTROLLING STYLE IN DIFFUSION MODELS THROUGH NOISE

Everaert M.N., Süsstrunk S., Achanta R., EPFL {martin.everaert, sabine.susstrunk, radhakrishna.achanta}@epfl.ch

Abstract

We observe that the style of images generated by Stable Diffusion is tied to the initial noise. Thus, we propose a method to adapt Stable Diffusion to various styles using style-specific noise during fine-tuning (ICCV23). We subsequently explain that white noise added during training preserves low-frequency (LF) content, and the model then learns to maintain the LF of the initial noise. Controlling this initial noise allows to generate images with desired styles without finetuning (WACV24).

Diffusion models Forward Diffusion (Noising) $\mathcal{X}_t = \sqrt{\bar{\alpha}_t} \, x_0 + \sqrt{1 - \bar{\alpha}_t} \, \varepsilon \text{ with } \varepsilon \sim \mathcal{N}(0_d, I_{d \times d})$ x_0 \hat{x}_{1000} Reverse Diffusion (Generation/Sampling)

Diffusion in Style

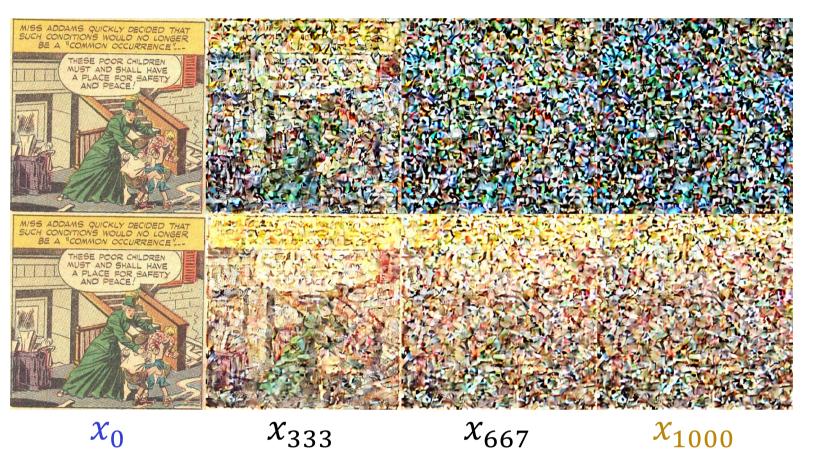
The initial noise \hat{x}_{1000} affects the style of the generated image \hat{x}_0 , so adapting it to the style facilitates style adaptation.

We fine-tune Stable Diffusion (SD) [1] with a style-specific noise **distribution** $\mathcal{N}(\mu_{style}, \Sigma_{style})$ instead of the default $\mathcal{N}(0_d, I_{d \times d})$.

Original diffusion $\varepsilon \sim \mathcal{N}(0_d, I_{d \times d})$

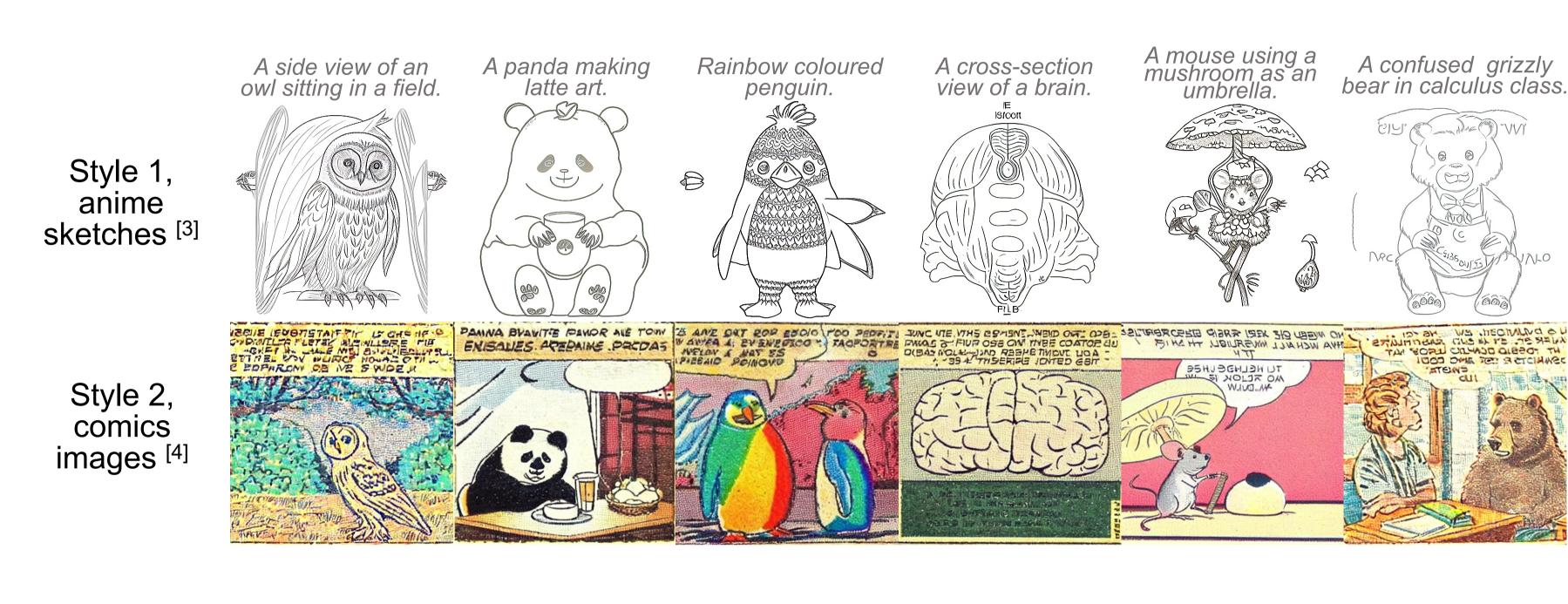
Our style-adapted diffusion $\varepsilon \sim \mathcal{N}(\mu_{style}, \Sigma_{style})$

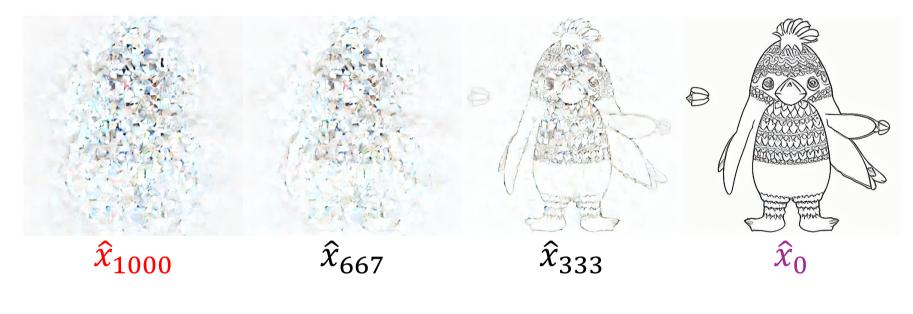
 $\approx 0.068 x_0 + 0.998 \varepsilon$

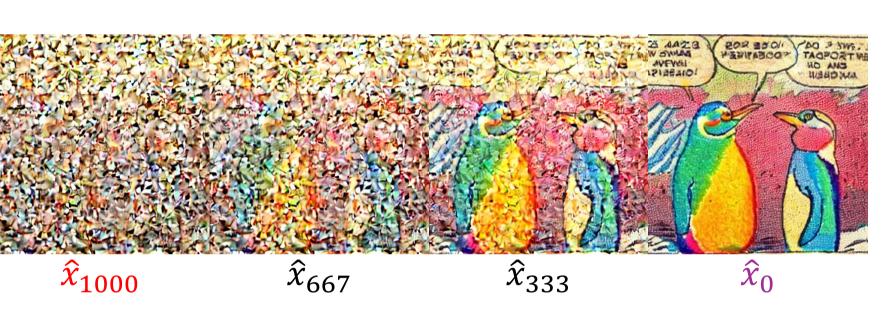


We compute the style-specific noise parameters μ_{style} and Σ_{style} from a small set of images of the desired style. We use the finetuned model to denoise the initial noise $\hat{x}_{1000} \sim \mathcal{N}(\mu_{style}, \Sigma_{style})$.

We use our approach to fine-tune SD 1.5 [1] to different styles, e.g. anime sketches, or comics images.



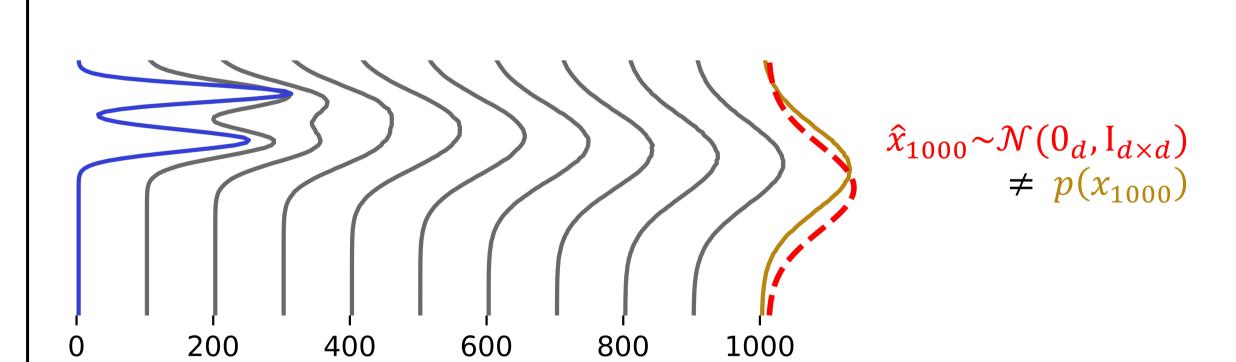




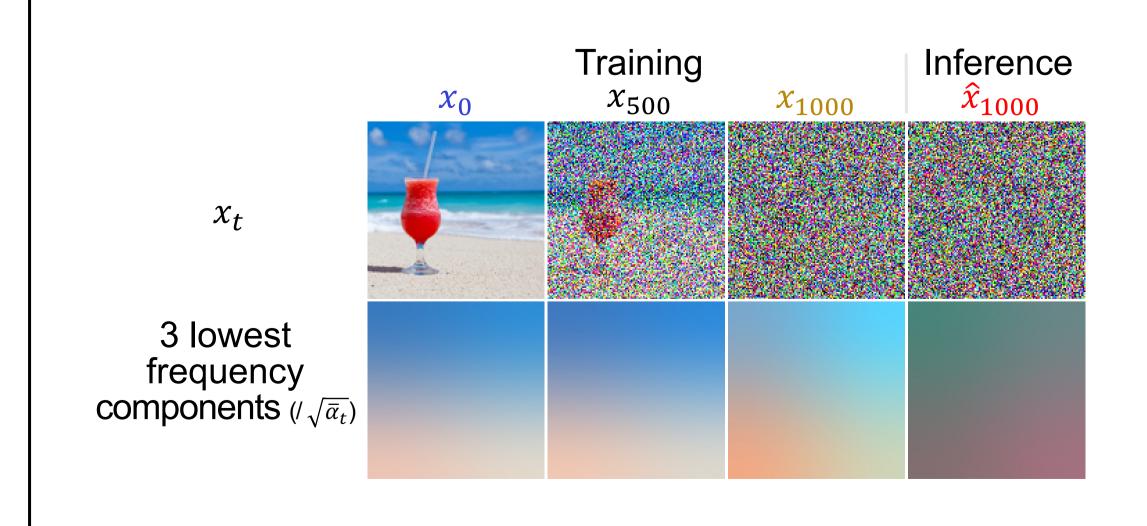
Exploiting the Signal-Leak Bias in Diffusion Models

Diffusion models never fully corrupt images during training ^[5,6]: $x_{1000} = \sqrt{\overline{\alpha}_{1000}} x_0 + \sqrt{1 - \overline{\alpha}_{1000}} \varepsilon$ with $x_0 \sim p(x_0)$ and $\varepsilon \sim \mathcal{N}(0_d, I_{d \times d})$

However, the process of generating images starts with pure noise $\hat{x}_{1000} \sim \mathcal{N}(0_d, I_{d \times d})$, oblivious of the **signal leak** $\sqrt{\bar{\alpha}_{1000}} x_0$ present in x_{1000} during training, creating a bias.



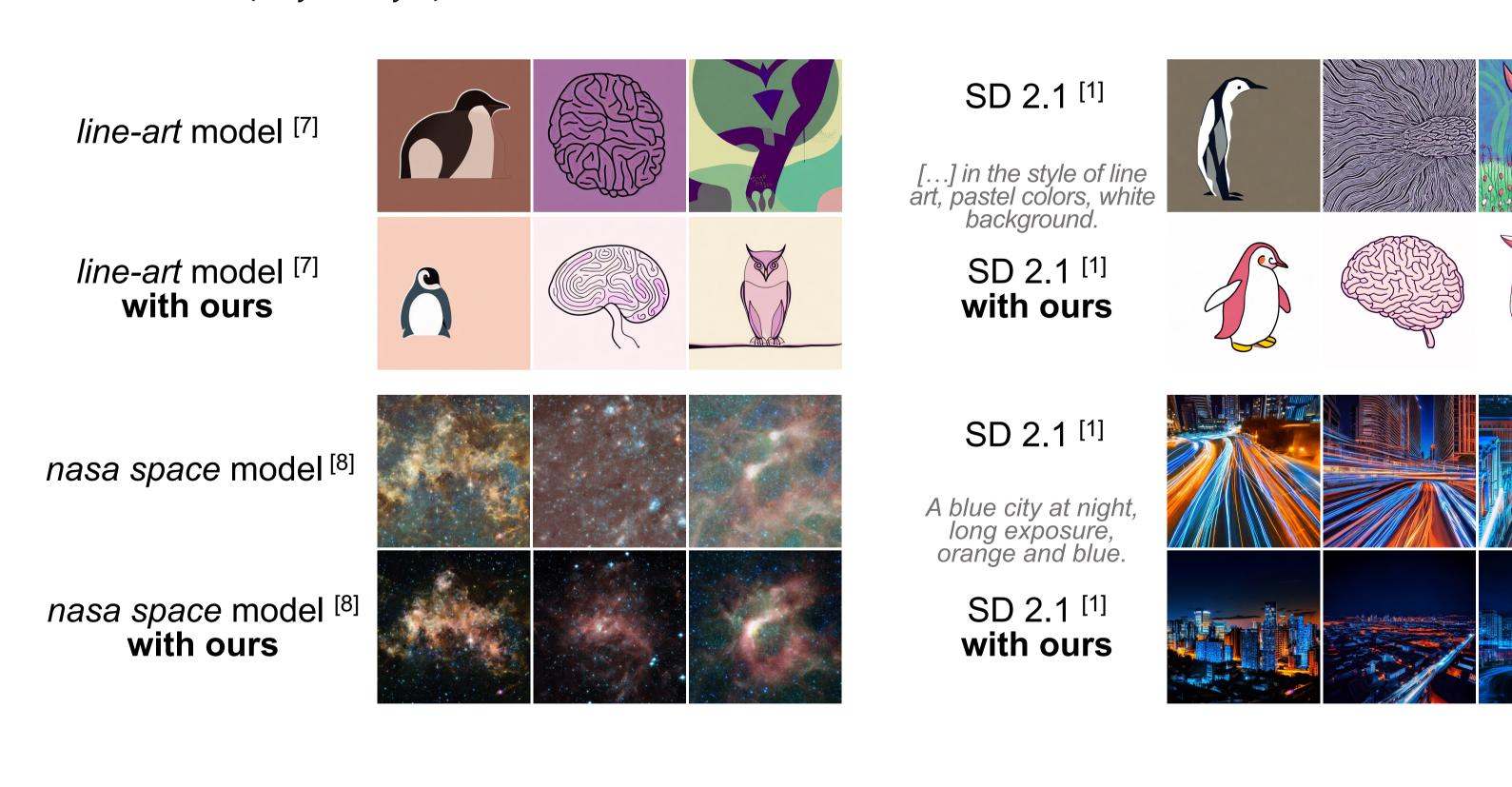
The diffusion model uses the signal-leak $\sqrt{\bar{\alpha}_{1000}} x_0$ in x_{1000} to deduce the low-frequency information about x_0 . Using $\hat{x}_{1000} \sim \mathcal{N}(0_d, I_{d \times d})$ biases the low-frequency components towards medium values.



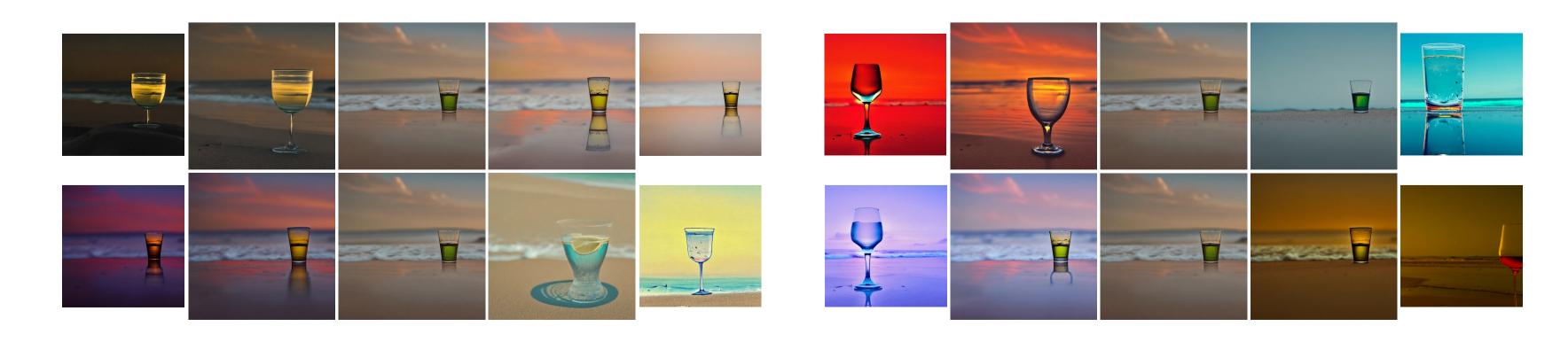
Instead of retraining or finetuning [5,6,A] to remove this bias, we exploit it to our advantage by including a signal-leak $\sqrt{\bar{\alpha}_{1000}} \tilde{x}$ in \hat{x}_{1000} at inference time, starting generating images from:

$$\hat{x}_{1000} = \sqrt{\bar{\alpha}_{1000}} \, \tilde{x} + \sqrt{1 - \bar{\alpha}_{1000}} \, \varepsilon$$
 with $\tilde{x} \sim q(\tilde{x})$ and $\varepsilon \sim \mathcal{N}(0_d, I_{d \times d})$

With $q(\tilde{x}) = \mathcal{N}(\mu_{style}, \Sigma_{style})$, we exploit the bias to generate images \hat{x}_0 in the style we want:



At inference time, we can control the low-frequency components of the generated images \hat{x}_0 by setting the desired ones (here, the mean color) in \tilde{x} :



References

[A] Everaert M.N. et al. "Diffusion in style." ICCV 2023. [B] Everaert M.N. et al. "Exploiting the signal-leak bias in diffusion models." WACV 2024. [1] Rombach R. et al. "High-resolution image synthesis with latent diffusion models." CVPR 2022. [2] Nichol A. and Dhariwal P. "Improved denoising diffusion probabilistic models." ICML 2021. [3] Taebum K. "Anime Sketch Colorization dataset." Kaggle dataset. 2018.

[4] Simon and Kirby. "48 Famous Americans." 1947. [5] Guttenberg N. "Diffusion with Offset Noise." 2023 [6] Lin S. et al. "Common Diffusion Noise Schedules and Sample Steps are Flawed." WACV 2024. [7] Karan D. "line-art" model. via huggingface.co/sd-concepts-[8] MatAlart. "nasa space" model. Via huggingface.co/sddreambooth-library. 2022

